Phrase Structures and Dependencies for End-to-End Coreference Resolution

نویسندگان

  • Anders Björkelund
  • Jonas Kuhn
چکیده

We present experiments in data-driven coreference resolution comparing the effect of different syntactic representations provided as features in the coreference classification step: no syntax, phrase structure representations, dependency representations, and combinations of the representation types. We compare the end-to-end performance of a parametrized state-of-the-art coreference resolution system on the English data from the CoNLL 2012 shared task. On their own, phrase structures are more useful than dependencies, but the combinations yield highest performance and a significant improvement on the resolution of pronouns. Enriching phrase structure with dependency trees obtained from an independent parser is most helpful, but an extension of the predicted phrase structure using just pattern-based phraseto-dependency conversion seems to provide signals for the machine learning that cannot be distilled from phrase structure alone (despite intense feature selection). This is an interesting result for a highly configurational language: It is easier to learn generalizations over grammatical constraints on coreference when grammatical relations are explicitly provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coreference Resolution with Reconcile

Despite the existence of several noun phrase coreference resolution data sets as well as several formal evaluations on the task, it remains frustratingly difficult to compare results across different coreference resolution systems. This is due to the high cost of implementing a complete end-to-end coreference resolution system, which often forces researchers to substitute available gold-standar...

متن کامل

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

End-to-End Coreference Resolution for Clinical Narratives

Coreference resolution is the problem of clustering mentions into entities and is very critical for natural language understanding. This paper studies the problem of coreference resolution in the context of the important domain of clinical text. Clinical text is unique because it requires significant use of domain knowledge to support coreference resolution. It also has specific discourse chara...

متن کامل

Corefrence resolution with deep learning in the Persian Labnguage

Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...

متن کامل

Impact of Coreference Resolution on Slot Filling

In this paper, we demonstrate the importance of coreference resolution for natural language processing on the example of the TAC Slot Filling shared task. We illustrate the strengths and weaknesses of automatic coreference resolution systems and provide experimental results to show that they improve performance in the slot filling end-to-end setting. Finally, we publish KBPchains, a resource co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012